
1 Huygens' Principle

1.1 Light as a wave

In this chapter we no longer consider light and light propagation within the
framework of geometrical optics or ray optics, but as a wave propagation phe-
nomen. This translates into a more mathematically description in which the
wave nature of light appears. A very basic, but important example is the pas-
sage of a light wave through a small aperture in an opaque screen. The ray
optics description of this basic experiment leads to the conclusion that the size
of the observed lightpattern on an observation screen some distance from the
aperture will be simply proportional to the size of the hole, where the opaque
screen corresponds to the light shadow.

This is an oversimpli�cation. Such a proportionality law seems to hold quite
well for fairly large holes but does not apply at all for smaller holes. Indeed, if
we examine carefully the transition from illuminated to nonilluminated areas,
the predictions based on the geometrical optics do not hold even for large holes.
Furthermore, as the hole area is decreased further, the observed light pattern
will increase as the diameter of the hole decreases - an attempt to illustrate
this situation is shown in Fig. 1. This �gure shows a series of intensity pat-
terns recorded in a plane 30 cm behind a series of apertures illuminated with
a collimated beam of quasimonochromatic light. The magni�cation is 20X and
the size of each aperture is indicated, in each case, with its corresponding ob-
served light pattern. Quite clearly, simple geometric predictions are inadequate
and fail. A more profound analysis will reveal the wave nature of light which
demands a quite di�erent mathematical framework.

30 cm

Aperture
plane

Observation
plane

Figure 1: Experimental arrangement for producing di�raction patterns of aper-
tures placed in the aperture plane along with the circular apertures.

From the point of view of basic physics, the wave nature of light is fundamen-
tal, stemming from the consideration that light is an electromagnetic phenomen
and hence is described by the vector wave equations, which can be derived from
Maxwell's equations. This approach to the problem involves a level of mathe-
matical complexity that is out of place in this book. Those interested in this
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aspect should refer to the books by Saleh & Teich or J. Goodman which presents
very readable treatments. For our purposes, we shall assume a more pragmatic
approach. We take it as an empirically established fact that a large class of
optical phenomena can be accurately described by the hypothesis that light is a
scalar, monochromatic wave. For the more fundamental aspects the interested
reader may �nd a profound discussion in J. Goodman's book Introduction to
Fourier Optics. At a later point, when we will be in a better position to broaden
the discussion and we will look more carefully at this hypothesis.

1.2 Wave propagation

The basic problem of di�raction is the description how a wave propagates from
one plane to another. Mathematically this translates into a solution of the wave
equation. In its most general form, the scalar wave equation may be written as

∇2V (~x, t) =
1
c2
∂2V (~x, t)

∂t2
, (1)

where V (~x, t) is the optical �eld. For monochromatic waves, V (~x, t) separates
to a form

V (~x, t) = ψ(~x)ei2πνt, (2)

where ~x = xi + yj + zk, ~ξ = ξi + ηj + χk [See Eq. (6)], and ~i, ~j and ~k are
unit vectors along the coordinate axes; ν is the frequency of the wave; and
ψ(~x) describes the spatial variation of the amplitude. By substituting this
monochromatic wave into the general wave equation, the time dependence is
eliminated and the spatial part of the optical �eld is seen to satisfy the Helmholtz
equation:

∇2ψ + (
2πν
c

)2ψ = 0. (3)

At the beginning we will be concerned with the solution of this equation, which
can be written in a more convenient form as

∇2ψ + k2ψ = 0. (4)

Here ψ is the wave �eld, ∇ is the di�erential operator, and k is the wave number,
2π/λ; where λ is the wavelength. Equation (4) may be rigorously solved using
Green's theorem (see, for example, J. Goodman). For the present however,
we shall be content with an approximate solution which emphasizes the basic
physics of the problem. The relation to the rigorous solution is discussed in
Section ??. Here we shall be concerned with the Huygens' principle development
of the solution. Thus, our solution is constructed from the following principle: A
point source of light will give rise to a spherical wave �eld emanating equally in
all directions. To construct a general solution from this particular one, we note
that the Helmholtz equation is linear and hence a superposition of solutions
is permitted. Next we require only the point of view that an arbitrary wave
shape may be considered as a collection of point sources whose strength is given
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Figure 2: Schematic diagram for wave equation analyses with all pertinent
coordinates and distances

by the amplitude of the wave at that point. The �eld, at any point in space,
is simply a sum of spherical waves. This argument, while physically pleasing,
ignores the fact that the wave has a preferred direction. We may sharpen the
development by the inclusion of an inclination factor to take into account this
preferred direction.

This wave �eld description may be expressed mathematically as follows: a
spherical wave is described by the equation

ψsp =
e±ikr

r
, (5)

where r is the distance from the point source to the point of observation and the
± indicates diverging and converging waves, respectively. Thus, if the distur-
bance across a plane aperture is described by a wave function ψ′(ξ̃) (here ~ξ is the
position vector in the aperture plane), then the Huygens' principle development
for the �eld at a point ~x beyond the screen leads to the expression

ψ(~x) =
∫

aperture

ψ′(~ξ)Λ(~x, ~ξ)
e+ikr(~x,

~ξ)

| ~r(~x, ~ξ) |
d~ξ. (6)

That is, Eq. (6) simply expresses the fact that a spherical wave of amplitude

ψ′(~ξ) emanates from each point ~ξ in the aperture; Λ(~x, ~ξ) is the inclination
factor referred to above. The exact form of this factor will be further developed
in a later chapter. For the present, we need only note that Λ(x, ξ) is essentially
constant if we restrict ~x and ~ξ to a suitably small region of the neighborhood
of the axis, i.e., a line normal to the aperture plane and passing through the
center of the aperture. Thus, with this restriction on the observation point, the
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solution takes the form

ψ(~x) = K

∫
ψ′(~ξ)

e+ikr(~x,
~ξ)

| ~r(~x, ~ξ) |
d~ξ. (7)

The remainder of this chapter is devoted to obtaining solutions of Eq. (7)

for various aperture geometries. First we note that the function ~r(~x, ~ξ) occurs
twice in Eq. (7). The |~r| in the denominator a�ects only the amplitude of the

wave and may be regarded as a slowly varying function if we restrict ~x and ~ξ as
indicated above. The ~r in the exponent, however, is multiplied by the k = 2π/λ
and a�ects the phase of the radiation. Hence, while ignoring the e�ects on
amplitude of the variations in r, we must retain the oscillating variation in the
exponent caused by the small r variations when integrating over the aperture.
Accordingly, Eq. (7) may be further simpli�ed to

ψ(x̃) =
K

z

∫
ψ′(~ξ)e+ikr(~x,~ξ)d~ξ. (8)

Since the amplitude varies slowly with the distance r, we may approximate r by
z (the screen distance) in the amplitude term. Thus, if we denote the Cartesian
coordinates in the aperture by ξ and η, the coordinates in the observation plane
by x and y, and the separation of the planes by z, we may use (see Fig. ??) the
Pythagorean theorem and write

r(~x, ~ξ) = [(x− ξ)2 + (y− η)2 + z2]1/2 = R

[
1 +

ξ2 + η2

R2
− 2(ξx+ ηy)

R2

]1/2
, (9)

where R = (x2 +y2 +z2)
1
2 . We now restrict our attention to relatively large dis-

tances so that Eq. (9) may be expanded in a binomial series and approximated
by its �rst two terms. Thus,

r(~x, ~ξ) ' R+
ξ2 + η2

2R
− 2(ξx+ ηy)

2R
. (10)

This approximation characterizes most of the optical phenomena in which we
are interested. Exceptions [i.e., cases where Eq. (10) is not allowed] are discussed
in a later chapter. On the basis of Eq. (10), di�raction problems are customarily
divided into groups depending on the relative magnitude of the last two terms.
Thus, for those circumstances in which the (ξ2 + η2)/2R may be eliminated in
either of the two ways described below.

1.3 Far-Field Approximation

The term (ξ2 + η2)/2R may be eliminated by increasing R to such a point that

k(ξ2 + η2)max
2R

� 1. (11)
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This condition is called the �far-�eld� approximation and is of particular
importance in many physical optics situations including the design of a pinhole
camera since it is exactly this condition that must be met. Using this condition
and Eqs. (10) and (8) and noting that z2 � x2 + y2, we obtain for the �eld

ψ(x, y) =
Ke−ikz

z

∫∫
ψ′(ξ, η) exp

[
−2πi
λz

(ξx+ ηy)
]
dξdη, (12)

where z ∼= R. Figures ??(g) and (h) are examples of this condition.

1.4 Fraunhofer Condition

The Fraunhofer condition

k · ξ
2 + η2

2R
� 1

neglects this quadratic term. Experimentally, this condition is achieved by
placing a lens in the (ξ, η) plane and observing the di�raction pattern formed
at the focus of the lens. To examine this approximation, it is necessary to
recall the function of a lens from the point of view of physical optics. Thus,
by de�nition, a lens is a device that converts a plane wavefront into a spherical
wavefront of radius f . The concept is illustrated in Fig. 3. Here P is a plane
wave incident on the lens; S is a spherical wave emergent from the lens; ρ is
the radial height to an arbitrary point on S; and x is the radial distance from
the foot of the perpendicular from S to the wavefront. From the Pythagorean
theorem we have (f − x)2 + ρ2 = f2 or 2xf = ρ2 − x2.

For paraxial optics, x is small and hence x2 may be ignored by comparison.
Thus,

x =
ρ2

2f
(13)

and Eq. (13) is referred to as the �sagittal� approximation. The phase change
introduced by a lens is therefore

φ = kx = k
ξ2 + η2

2f
. (14)

The lens placed in the (ξ, η) plane yields an additional term exp[−ik(ξ2 +
η2)/2f ] because it produces a converging spherical wave [see Eq. (5)]. This
term cancels the term in (ξ2 + η2) arising from Eq. (10) when f = z. Thus, the
�eld at the point (x, y) in the focal plane is given by

ψ(x, y) =
Ke−ikf

f

∫∫
ψ′(ξ, η) exp

[
−2πi
λf

(ξx+ ηy)
]
dξdη. (15)

Note that Eq.(15) is identical to Eq.(12) if f is substituted for z. These equations
state that the �eld in the far zone or in the focal plane of the lens is the Fourier
transform of the �eld across the di�racting aperture. They constitute the basic
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Figure 3: Schematic diagram for lens analysis demonstrating the conversion of
a plane wavefront to a spherical wavefront of radius f .

equations of Fraunhofer di�raction theory and are the principal results of this
chapter. The use of this integral to determine di�raction patterns is discussed
further in later chapters. The experimental realization of these conditions and
illustrations will be given.

2 Fourier transform

2.1 Introduction

The principal result of Section1 was the demonstration that the Fraunhofer
di�raction pattern associated with the �eld distribution existing across an aper-
ture is the Fourier transform of that �eld. To be precise, the Fraunhofer di�rac-
tion pattern of an aperture distribution is obtained when the point of observation
is very far away, almost in�nitely distant from a coherently illuminated aper-
ture. In practice, of course, this condition never describes a physical situation.
However, the Fraunhofer theory provides an adequate approximation in many
physically signi�cant experiments. These experiments are characterized by one
of the following conditions:

1. If the plane containing the point source and the plane of observation
are parallel conjugate planes of a well-corrected optical system and
both source and point of observation lie near the optical axis, then the
Fraunhofer di�raction pattern of the limiting aperture is observed.

2. The distances from the source to the di�racting aperture z′ and from
the di�racting aperture to the plane of observation z are such that

|z| and |z′| � (ξ2 + η2)max

λ
, (16)

where ξ and η are coordinates of a general point in the di�racting aperture
and λ is the wavelength of the incident wave. Conditions 1 and 2 are those
expressed in Section 1 by Eqs. (12) and (15).
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The Fourier transform plays an important role in optics, therefore the name
Fourier optics was coined. Fourier optics is not only important in the determi-
nation of di�raction patterns and the description of interference phenomena, but
also in the description of imaging systems and in spectral analysis. Therefore,
we will present this topic in its mathematical context as well as an useful demon-
stration in the context of di�raction theory. Thus, based on Fourier transforms
we calculate some basic, but important di�raction patterns. We conclude with
a summary of some Fourier transform pairs useful in di�raction calculations.

2.2 Di�raction problems

Under the conditions stated in Sec. 2.1, the amplitude and phase of the �eld in
the focal plane are described by the Fourier transform of the aperture distribu-
tion, i.e., apart from constant factors,

ψ(x, y) = exp
(
ik(x2 + y2)

) ∫∫
A(ξ, η) exp

[
−ik
f

(ξx+ ηy)
]
dξdη. (17)

Here A(ξ, η) corresponds to ψ′(ξ, η) used in Sec. 1 and describes the amplitude
and phase distribution across the aperture and ψ(x, y) describes the �eld in the
focal plane.1

f

F

f

Figure 4: 2-f con�guration

Since only the intensity is detected, the quadratic phase term in front of the
integral multiplying the Fourier transform in Eq. (17) may usually be neglected.
It is important only in the case that the di�raction pattern is allowed to inter-
fere with a coherent background. For the remainder of this chapter, however,
the quadratic phase term will be omitted. Thus, the basic formulation of the
di�raction problem will take the form

ψ(x, y) =
∫∫

A(ξ, η) exp
[
−ik
f

(ξx+ ηy)
]
dξdη. (18)

1Note, that we will use a vectorial as well as a scalar description. The vectorial description
uses explicit notations as ~x, whereas the scalar description uses (x,y,z) coordinates.
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Transform equation (18) is indeed exact in an optical system if the di�racting
aperture is in the front focal plane and the recording plane is in the back focal
plane of the lens. This corresponds to the so-called 2-f con�guration as shown
in Fig. 4.

2.2.1 Slit Aperture

As the �rst example, we consider an in�nitely long slit of width 2a centered
along the η axis and uniformly illuminated. We take

A(ξ, η) =
{
A, |ξ| < a
0, |ξ| > a

}
= A rect(ξ|a). (19)

This is essentially a one-dimensional problem, where we used the rect- or box-
function for the aperture. The di�raction integral can be written as

ψ(x) =
∫
A(ξ) exp

(
−ik
f

(ξx)
)
dξ = A

a∫
−a

exp
(
−ikξx
f

dξ

)
. (20)

The integral in eq. (20) is readily evaluated to give

ψ(x) =
−Af
ikx

[
exp

(
−ikax
f

)
− exp

(
+ikax
f

)]
= 2aA

sin
(
kax
f

)
kax
f

. (21)

a b c

Figure 5: Di�raction by a slit aperture: the main features of the function
sinc(kax/f). a) the intensitiy pattern, b) the slit function c) the di�raction
amplitude

The notation sincθ = sinθ/θ is frequently used and in terms of this function
ψ(x) may be written as

ψ(x) = 2aA sinc
kax

f
. (22)

Since we have ignored the quadratic phase term in the calculation of the pattern,
Eq. (22) must be interpreted with caution. However, since amplitude and phase

8



are never detected directly in optical experiments, we may neglect this omission
except in those cases where ψ(x) is coherently added to another �eld. Thus,
no error is involved in using Eq. (22) to compute the intensity being discussed.
The intensity I(x), de�ned as ψ(x)ψ∗(x), is given by

I(x) = 4a2A2sinc2

(
kax

f

)
. (23)

Figure 5 shows a portion of the function sinc(kax/f) plotted as a function of x.

2.2.2 Rectangular Aperture

As our second example, we evaluate the di�raction pattern arising from a uni-
formly illuminated rectangular aperture of width 2a, length 2b, and amplitude
A centered on the axis of the ξ and η plane. Then

ψ(x, y) = A

+a∫
−a

+b∫
−b

exp
[
−ik
f

(ξx+ ηy)
]
dξdη; (24)

performing the integration as before we obtain

ψ(x, y) = 4Aab sinc
(
kax

f

)
sinc

(
kby

f

)
. (25)

The intensity is

I(x, y) = ψ(x, y)ψ∗(x, y) = 16A2a2b2sinc2

(
kby

f

)
. (26)

2.2.3 Circular Aperture

It is more convenient for this particular example to work in polar coordinates
when calculating the di�raction pattern according to eq. (18). We again apply
the same conditions for the amplitude and phase across the di�racting aperture.
A general point in the di�racting aperture of radius a will have polar coordinates
(ρ, φ) related to the rectangular coordinates (ξ, η) in the usual way.

ξ = ρ cosφ, η = ρ sinφ. (27)

Similarly, a general point in the transform plane has polar coordinates (r, θ).
Hence,

ψ(r, θ) =

a∫
0

2π∫
0

A exp
(
−ik
f
r cos θρ cosφ

)
exp

(
−ik
f
r sin θρ sinφ

)
ρdρdφ

=

a∫
0

2π∫
0

A exp
[
−ik
f
r cos(θ − φ)

]
ρdρdφ.

(28)
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a b c

Figure 6: Di�raction by a circular aperture: the main features of the function
2J1(kar/f)/(kar/f).

This integration may be performed using the integral representation of the
Bessel function, i.e.,

Jn(x) =
i−n

2π

2π∫
0

e−ix cos γeinγdγ (29)

and, in particular,

J0(x) =
1

2π

2π∫
0

e−ix cos γdγ. (30)

Hence, after a proper substitution, we obtain integration over dθ

ψ(r, θ) = 2πA

a∫
0

J0

(
krρ

f

)
ρdρ. (31)

For the Bessel functions we use the recurrence relation

x∫
0

x′J0(x′)dx′ = xJ1(x), (32)

and obtain �nally

ψ(r, θ) = Aπa2
2J1

(
kar
f

)
kar
f

, (33)

is plotted in Fig.6. The intensity distribution often called the �Airy� pattern,
after G. B. Airy who �rst calculated this di�raction pattern, is given by

I(r, θ) = ψ(r, θ)ψ∗(r, θ) = π2a4A2

∣∣∣∣∣∣
2J1

(
kar
f

)
kar
f

∣∣∣∣∣∣
2

. (34)
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2.3 Fourier Transform and spatial frequencies

Fourier optics provides a general framework for image formation based on har-
monic analysis and linear system theory, in brief the notations which have been
heuristically introduced in the former sections. So far we have seen, that wave
propagation and di�raction is intimately linked to Fourier analysis. However,
Fourier analysis is very often perceived as an nonintuitive and rather pure math-
ematical concept. In the framework of Fourier theory, any signal can be ex-
pressed as a sum of a series of so-called harmonic functions. The harmonic
function F (ν) exp(j2πνt) with frequency ν and complex amplitude F (ν) is the
basic element of this harmonic analysis. As we have seen in the preceeding sec-
tion, an arbitrary function f(t) can be decomposed in several basic functions
each with its own frequency ν and complex amplitude F (ν). These harmonic
functions play a key role, the fourier transform F (ν) (also called the fourier
transform of f(t) ) is given as

F (ν) =
∫
f(t) exp(−j2πνt)dt (35)

where the integral over t is taken over the range [−∞...+∞] . The inverse
fourier transform f(t) is given as

f(t) =
∫
F (ν) exp(j2πνt)dν (36)

where the integral over ν is taken over the range [−∞...+∞], the variable t
usually represents time and the conjugated frequency ν has units of cycle/s or
Hz. In this time domain description, harmonic analysis allows to expand an
arbitrary function of time f(t) as a sum or integral of these harmonic function
of time each of them characterised by a speci�c frequency ν.

Here the meaning �frequency� is mainly used in the context of �temporal
frequency�, i.e. the frequency denotes a rate of repetition of wave forms in unit
time.

Quite similar �spatial frequency� denotes the rate of repetition of a particular
pattern in unit distance. The fourier transform becomes now a function over
two spatial coordinates (x, y). For imaging the fourier analysis is generalized
to functions of two variables i.e. a function f(x, y) may be decomposed as a
superposition integral of spatial harmonic functions in x and y. The inverse
fourier transform is given as

f(x, y) =
∫∫

F (νx, νy) exp(j2π(νxx+ νyy)) dνxdνy (37)

where the double integral over (x, y) extends over the ranges [−∞...+∞] .
The fourier transform F (νx, νy) is given as

F (νx, νy) =
∫∫

f(x, y) exp(−j2π(νxx+ νyy)) dxdy (38)
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Figure 7: periodic patterns a) low frequency pattern b) high frequency pattern
c) the fourier transform of (a) d) the fourier transform of (b) e) a tilted periodic
pattern f) the fourier transform of (e) g) adding pattern (a) and (e) h) the
fourier transform of (g)

The spatial frequencies νx, νy are indispensable in a quantitative description
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of image formation and a main element of Fourier optics. For example a periodic
pattern as shown in �g. 7 can be captured in a single Fouier term that encodes
1: the spatial frequency, 2: the magnitude (positive or negative), and 3: the
phase.

Quite obviously the spatial frequency corresponds to the periodicity, the
magnitude to the brightness and the phase to the spatial placement of individ-
ual stripes. The last expample in �g. 7 shows a linear superposition of two
spatial frequencies. This adding is nothing else than an image synthesis i.e. or
mathematically the superposition of elementary harmonic functions.

2.3.1 Example - the in�nite slit

In the former section (2.2.1) we applied our fourier transform analysis to a
slit opening. Reregarding this calculation within the harmonic analysis means
that we decompose the slit opening in its harmonic frequency content. It is
straightforward to name this frequency content the object spectrum of our slit
object.

Fig. 8 shows the fourier analysis of this in�nit slit. The upper part show the
fundamental pattern of frequency 1, together with the higher harmonics. These
are the �odd harmonics� which exhibit a bright vertical band in the center. The
corresponding fourier transforms are shown below. In the following the adding
of these harmonics is given. This superposition of harmonics leads to a bright
and brighter slit in the image center. The lower part of the �gure shows what
would happen if this process were continued, it would produce a thin vertical
stripe of high brightness with sharp boundaries. The fourier transform of this
opening exhibits an �in�nite�series of harmonics, the spectrum of this object is
indicated in the �gure beside. Quite obviously this �gure corresponds to the
calculated amplitude spectra (eq. 22) or precisly its corresponding intensity
pattern as expressed by eq. 23.
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Figure 8: the in�nite slit and its fourier decomposition

2.4 Plane wave and harmonic function

Our consideration of wave propagation and di�raction has been based on the
Helmholtz equation (compare eq. 4)

∇2ψ + k2ψ = 0.
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The simpelst solution to the Helmholtz equation in homogenous medium are
the plane wave as well as the spherical wave (see eq. 5). The plane wave has
the complex amplitude
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3 Array Theorem

3.1 Introduction

In this chapter, we continue the study of Fraunhofer or far-�eld di�raction. As
we have seen before, Fraunhofer di�raction leads to a di�racted amplitude dis-
tribution proportional to the Fourier transform of the amplitude distribution
across the di�racting aperture (see Fig. 9). In the former chapters, some exam-
ples of di�raction calculations were given for the most important and standard
aperture shapes. In this chapter, we examine in particular the e�ect of com-
bining apertures of similar shape. In this case, the di�raction integral assumes
an interesting and characteristic form and gives rise to a subclass of di�raction
e�ects that is important enough to receive a special nomenclature and study,
namely, interference by division of a wavefront.

r PQ

x

y

ξ

n

r PQ Q(x,y)

P(ξ,η) z

η

Figure 9: Kirchho� Integral and di�raction

3.2 The array theorem

A large number of interference problems involve the combination of similar
di�raction patterns. They arise in the study of the combined di�raction pat-
terns of an array of similar di�racting apertures. This entire class of interference
e�ects can be described by a single relation, the so-called array theorem. This
unifying theorem is the underlying mathematical concept for studing interfer-
ence by wavefront division.

Let ψ(~ξ) represent the amplitude and phase distribution across one aperture
centered in the di�raction plane, and let the total di�racting aperture consist of
a collection of these elemental apertures at di�erent locations ~ξn. This concept
is illustrated in Fig. 10. We require �rst a method of representing such an
array. The appropriate representation is obtained readily by means of the delta
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function. Thus, if an elemental aperture is positioned such that the location
vector is at the point ~ξn, the appropriate distribution function is ψ(~ξ − ~ξn).

ξ

η

Figure 10: Array theorem - handling a distribution of identical openings

The combining property of the delta function allows us to represent this
distribution as follows:

ψ(~ξ − ~ξn) =
∫
ψ(~ξ − ~α)δ(~α− ~ξn)d~α. (39)

The integral in Eq. (39) is a convolution integral and plays an important role in
Fourier optics. Thus, if we wish to represent a large number N of such apertures
with di�erent locations, we could write the total aperture distribution Ψ(x) as
a sum, i.e.,

Ψ(~ξ) =
N∑
n=1

ψ(~ξ − ~ξn). (40)

Or by using the combining property of the delta function i.e. combining the
features of Eqs. (40) and (39),

Ψ(~ξ) =
N∑
n=1

ψ(~ξ − ~α)δ(~α− ~ξn)dα. (41)
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Eq. (41) may be put in a more compact form by introducing for the locations

A(~α) =
N∑
n=1

δ(~α− ~ξn), (42)

whence Eq.(41) becomes

Ψ(~ξ) =
∫
ψ(~ξ − ~α)A(~α)d~α. (43)

which is physically interesting in the sense that A(~α) characterizes the array

itself. That is, A(~α) describes the location of the apertures and ψ(~ξ) describes
the distribution across a single aperture. We can now calculate the Fraun-
hofer di�raction pattern associated with this array. From the former chapter
on Huygens principle , we obtained that the Fraunhofer pattern is the Fourier

transform of the aperture distribution. Thus, the Fraunhofer pattern ~̃(xΨ) of

the distribution Ψ(~x) is given by Ψ(~ξ)

Ψ̃(~x) =
∫

Ψ(~ξ) exp(
−2πi~ξ · ~x

λf
)dξ (44)

substituting from Eq. (43) gives

Ψ̃(~x) =
[∫ ∫

ψ(~ξ − ~α)A(~α)d~α
]

exp(
−2πi~ξ · ~x

λf
)d~ξ. (45)

A very important theorem of Fourier transforms (a proof is given in the
Appendix, Sec. 4.2) states that the Fourier transform of a convolution is the
product of the individual Fourier transforms. Thus, Eq. (45) may be written as
a simple product

Ψ̃(~x) = ψ̃(~x)Ã(~x), (46)

where ψ̃(~x) and Ã(~x) are the Fourier transforms of ψ(~ξ) and A(~α). Equation (46)
is the array theorem and states that the di�raction pattern of an array of iden-
tical apertures is given by the product of the elemental pattern ψ̃(~x) and the
pattern that would be obtained by a similar array of point sources, Ã(~x). Thus,
the separation that �rst arose in Eq. (43) is retained. To analyze the compli-
cated patterns that arise in interference problems of this sort, one may analyze
separately the e�ects of the array and the e�ects of the individual apertures.

3.3 Applications of array theorem

3.3.1 Two-Beam Interference

In this section, we use Eq. (46) to describe the simplest of interference ex-
periments, Young's double-slit experiment in one dimension. To facilitate in-
terpretation of the results, the transform is written in the sharpened form as
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given according to the Huygens principle. Thus, the individual aperture will be
described by

ψ(ξ) =
{
C, |ξ| ≤ a
0, |ξ| > a

}
= rect(ξ|a). (47)

Here C is a constant representing the amplitude transmission of the apertures.
From the former chapter on Fourier transforms we have the result that the

elemental distribution in the Fraunhofer plane is

ψ̃(x) = 2aC sinc
2πax
λf

. (48)

The array in this case is simply two delta functions; thus,

A(ξ) = δ(ξ − b) + δ(ξ + b). (49)

I(x) I(x)

x x

(a) (b)

Figure 11: (a) The normalized intensity distribution in the Fraunhofer pattern
of two apertures having the ratio b/a ' 4.5 and (b) the normalized intensity
distribution in the Fraunhofer pattern of a larger number of apertures having
the same ratio as (a).

The array pattern is, therefore,

Ã(x) =
∫

[δ(ξ − b) + δ(ξ + b)] exp
(
−2πiξx
λf

)
dξ; (50)

Eq. (50) is readily evaluated by using the combing property of the delta function.
Thus,

Ã(x) = exp
(

2πibx
λf

)
+ exp

(
−2πibx
λf

)
= 2 cos

(
2πbx
λf

)
. (51)

Finally, the di�raction pattern of the array of two slits is

Ψ̃(x) = 4aC sinc
(

2πibx
λf

)
cos
(

2πbx
λf

)
(52)
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The intensity is

I(x) = 16a2C2 sinc2

(
2πibx
λf

)
cos2

(
2πbx
λf

)
(53)

From Eq. (53) it is clear that the resulting pattern has the appearance of
cosine2 fringes of period λf/b with an envelope sinc2(2πax/λf). A typical
distribution is shown in Fig. 11(a).

In a precisely similar manner, we can use our previous results to build up
the expressions for the interference observed by using two square apertures and
two circular apertures. It is suggested that the reader solve these two problems
as an exercise in the use of the array theorem.

3.3.2 One-Dimensional Array

For N identical apertures equally separated by a distance 2b, the array theorem
takes the general form derived below, of which the two-beam example is a special
case. The array of delta functions will be represented by a sum of the form

A(ξ) =
N−1∑
n=0

δ(ξ − 2nb). (54)

Thus, the Fourier transform of the array is given by

A(ξ) =
N−1∑
n=0

exp
(
−2πi2bxn

λf

)
, (55)

which may be written as (geometrical series)

=
1− exp

(
−2πiN2bx

λf

)
1− exp

(
−2πi2bx
λf

) . (56)

Therefore,

ψ̃(x) = 2aC

1− exp
(
−2πiN2bx

λf

)
1− exp

(
−2πi2bx
λf

)
 sinc

(
2πax
λf

)
and

I(x) = 4a2C2

[
1− cos N2π2bx

λf

1− cos 2π2bx
λf

]
sinc2

(
2πax
λf

)
(57)

Hence, rewriting the term in square brackets,

I(x) = 4a2C2

 sin2
(

2πNbx
λf

)
sin2

(
2πbx
λf

)
 sinc2

(
2πax
λf

)
(58)

Note that Eq. (58) reduces to Eq. (53) when N = 2. Figure 11(b) shows the
distribution for N large.
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3.4 Some examples

In this section, a number of illustrations are given covering the mathematical
discussions on Fourier transforms and the preceding discussion of the array
theorem.

Figure 12 shows a series of photographs of the Fraunhofer di�raction patterns
of single apertures. The apertures are shown, with the correct orientation, below
the photographs.

Figure 13 illustrates di�raction by an array of two to six slits. The whole of
these patterns is contained in the �rst maximum of the sinc2 envelope function.
Note that, as the number of slits increases, the main maxima stay in the same
position but get sharper and there are N − 2 subsidiary maxima.

Finally, Fig. 14 illustrates some further examples of the array theorem.
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Figure 12: Photographs of the Fraunhofer di�raction patterns (Fourier trans-
forms) of various apertures: (a) slit aperture with a slit source, (b) slit aperture
with point source, (c) triangular aperture, (d) rectangular aperture, (e) pentag-
onal aperture, and (f) hexagonal aperture.

22



Figure 13: Di�raction patterns of various numbers of slits from two to six, with
point source
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Figure 14: Illustration of the array theorem showing (a) an array of circu-
lar apertures contained within a rectangular aperture, (b) an array of circular
apertures contained within a circular aperture, (c) a hexagonal array of cir-
cular objects and (d), (e), and (f), respectively, the corresponding Fraunhofer
di�raction patterns.

3.5 Conclusion

As a shorthand notation, we introduce the tilde, to denote the spatial Fourier
transform. This notation is used throughout the remainder of this book; i.e.,

ψ̃(x, y) =
∫
ψ(ξ, η)e−ik(ξx+ηy)dξdη. (59)

In conclusion we should like to collect a number of Fourier transform pairs
to form a table as shown in Fig. 3.5. In each case, the function ψ(ξ, η) trans-
forms to the function ψ̃(x, y) and vice versa. The table is self explanatory and
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Figure 15: 3D_fourier transform pairs of particular interest in di�raction

needs no further comment, except to state that the curves are diagrammatic
representations only.

4 Appendix

4.1 Delta Function

In many di�raction and interference problems, it proves convenient to make
use of a special function, the Dirac delta function. This function is de�ned
by the following property: let f(ξ) be any function (satisfying some very weak
convergence conditions) and let δ(ξ − ξ′) be a delta function centered at the
point ξ′; then

b∫
a

f(ξ)δ(ξ − ξ′)dξ =
{
f(ξ′), (a < ξ′ < b)
0, otherwise

}
. (60)

We note, therefore, that
∞∫
−∞

δ(ξ − ξ′)dξ = 1. (61)
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The Fourier transform of the delta function is given by

ψ(x) =
∫
δ(ξ − ξ′) exp

(
−ikxξ
f

)
dξ, (62)

which by the de�nition of the delta function becomes

ψ(x) = exp
(
−ikxξ′

f

)
. (63)

The amplitude is constant and the phase function (kxξ′/f) depends on the
origin. When ξ′ = 0 then the delta function is at the origin and the transform
is a constant. The converse is also true, of course, that a constant extending
from −∞ to +∞ transforms to a delta function.

4.2 convolution theorem

The derivation of the convolution theorem is greatly facilitated by making use
of an integral representation of the delta function. A common and useful one-
dimensional representation may be obtained by taking the Fourier transform of
both sides of Eq. (60) in the preceding chapter. It is

δ(x− x′) =
∫

exp−2πiµ(x−x′) dµ. (64)

This representation is given without proof, more information can be found in
the literature (see further reading).

Let f(x) and g(x) be two functions that possess Fourier transforms, i.e.,

f̃(µ) =
∫
f(x)e2πiµxdx, (65)

g̃(µ) =
∫
fg(x)e2πiµxdx. (66)

By the inversion theorem, we write

f(x) =
∫
f̃(µ)e−2πiµxdµ, (67)

g(x) =
∫
g̃(µ)e−2πiµxdµ. (68)

We wish to �nd an expression for the Fourier transform of h(x) = f(x)g(x).
Thus,

h̃(µ) =
∫
h(x)e2πiµxdx

=
∫
f(x)g(x)e2πiµxdx

(69)
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Substituting from Eqs. (67) and (68) into Eq. (69) and introducing the
dummy variables τ and η to avoid the confusion of too many µ's, we obtain

h̃(µ) =
∫ [∫∫

f(τ)g(η)e−2πτxe−2πηxdτdη

]
e2πiµxdx (70)

Rearranging the integrals in Eq. (70), we write

h̃(µ) =
∫∫∫

f(τ)g(η)e2πx[µ−(τ+η)]dxdτdη. (71)

The innermost integral (running over x) in Eq. (71) is just a Dirac delta function
according to Eq. (64); thus, Eq. (71) reduces to

h̃(µ) =
∫∫∫

f(τ)g(η)δ(τ − (µ− η))dxdτdη. (72)

Using the combing property of the delta function,

h̃(µ) =
∫
f(µ− η)g(η)dη. (73)

Equation (73) is the convolution theorem and expresses the Fourier trans-
form of h(x) in terms of the convolution of the transforms of its products. The
inversion theorem applied to Eq. (73) gives us the convolution theorem in the
form required for the array theorem. Thus,

h(x) = f(x)g(x) =
∫
h̃(µ)e−2πµxdµ

=
∫ [∫

f(µ− η)g(η)dη
]
e−2πµxdη.

(74)

There are, of course, other ways of deriving this identity but we have purposely
chosen the method using the delta function as a further illustration of its use.
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5 Impulse Response

5.1 Introduction

Based on these wave-optical considerations we will now derive physical optical
aspects of image formation. This approach will show us some tight links be-
tween important parameters known from geometrical optics as object and image
distances, magni�cation, etc. More important, however, is the fact that image
quality limitations are immediately evident from such a development. The word
�quality� is used here to describe the subjective impression.

Let us start the problem of image formation from the physical optical point
of view by considering objects that are incoherently illuminated.

5.2 Impulse response

To give a completely general and consistent development of image formation
with incoherent light requires several important results from the theory of par-
tial coherence. As we have not yet discussed this theory, we resort to a two-step
development in this chapter. This development, while correct and physically
meaningful, is not detailed enough to include the subtleties that can be treated
later. We are concerned with incoherent quasimonochromatic light. The precise
de�nition of the term quasimonochromatic requires some concepts from coher-
ence theory and, therefore, is rigorously de�ned in a later Section ??. Here it is
su�cient to imagine a quasimonochromatic light �eld as a light �eld, where its
frequency bandwith is a small fraction of its central frequency and which is used
in experiments involving su�ciently small path di�erences. Without the rigor
of coherence theory, we have to characterize such a system by single concepts
so far unexplained until a proper treatment of coherence theory. This concept
for incoherent imaging may be simply stated: An optical system employing in-
coherent radiation may be regarded as linear and stationary in intensity. This
statement implies two properties: linearity and stationarity, which are explained
in the following sections. For mathematical simplicity, the development in this
chapter is in one dimension. In later chapters, the analysis is extended to two
dimensions where necessary.

5.2.1 Linearity

A system is linear if the addition of inputs produces an addition of correspond-
ing outputs. Throughout this discussion, the arrow, →, should be read as
�produces�. If f1(x′) is an input that produces an output g1(x) denoted by

f1(x′)→ g1(x), (75)

and if
f2(x′)→ g2(x), (76)

then
af1(x′) + bf2(x′)→ ag1(x) + bg2(x), (77)
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where a and b are constants.

5.2.2 Stationarity

The property of stationarity implies that if the location of the input is changed,
i.e., f1(x′) is replaced by f1(x′ − x′0), the only e�ect on the output is to change
its location, i.e.,

f1(x′ − x′0)→ g1(x− x0). (78)

These properties of linearity and stationarity are fundamental to the de-
velopment of image theory. Under suitable conditions, optical systems possess
these properties.

To develop an image theory from these concepts, it is only necessary to �nd
an expression for the image of a point object.

This conclusion may be obtained from the following argument. Consider an
object consisting of two points located at x′1 and x′2 and let the intensity at
these two points be given by f(x′1) and f(x′2), respectively. The object intensity
Iobj(x′) may be expressed using delta functions as

Iobj(x′) = f(x′)δ(x′ − x′1) + f(x′)δ(x′ − x′2). (79)

Here δ is the Dirac delta function discussed in Section 3. The intensity image
of one point may be denoted by S(x), i.e.,

δ(x′)→ S(x), (80)

where S(x) is called the impulse response or point spread function. The
images of the two points can be written down immediately using the properties
of linearity and stationarity. Thus,

f(x′)δ(x′ − x′1)→ f(x1)S(x− x1), (81)

and
f(x′)δ(x′ − x′2)→ f(x2)S(x− x2); (82)

f(x′)δ(x′ − x′1) + f(x′)δ(x′ − x′2)
→ f(x1)S(x− x1) + f(x2)S(x− x2).

(83)

Similarly, if the object is consisted of a large set of points, i.e.,

Iobj(x′) =
N∑
n=1

f(x′)δ(x′ − x′n), (84)

then the output or image will be given by a sum of impulse responses, i.e.,

N∑
n=1

f(x′)δ(x′ − x′n)→
N∑
n=1

f(xn)S(x− xn). (85)
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We may de�ne the image intensity as Iim(x) and rewrite the above expression
as an equation:

Iim(x) =
N∑
n=1

f(xn)S(x− xn). (86)

Up to this point, we have considered only objects consisting of discrete points.
However, the arguments are readily generalized to continuously varying ob-
jects as follows: Let f(x”) describe the intensity variation across a continuously
varying scene. We may write f(x”) as a �sum of delta functions� by using the
�combing� property of the delta function (see Section 3). Thus,

Iobj(x′) = f(x′) =
∫
f(x′′)δ(x′ − x′′)dx′. (87)

The only di�erence between this representation of the object and the preceding
one is that Iobj(x′) is now given by a continuous sum, an integral. Still the prop-
erties of linearity and stationarity allow us to write the output as a continuous
sum of impulse responses, i.e.,∫

f(x′′)δ(x′ − x′′)dx′′ →
∫
f(x′)S(x− x′)dx′. (88)

Hence, denoting the image by Iim(x), we write

Iim(x) =
∫
f(x′)S(x− x′)dx′ (89)

Equation (89) is, of course, exactly analogous to Equation (86) where the inte-
gral (a continuous summation) replaces the discrete summation. Equation (89)
is, in fact, the starting point for the analysis of any linear stationary system.

It is clear from Eq. (89) that if we can obtain an expression for the image of
a point object, i.e., the point spread function, we can determine the image Iim,
by convolving the object distribution f(x′) with the point spread function2 We
may then use this answer to describe the image of an arbitrary object by using
Eq. (89). To obtain an expression for the impulse response, we must determine
the wave-optical solution for the image of a point object.

5.3 Image of a point object

Starting from an optical �eld Ψobj(x′) at the object plane located at a distance
z from a lens with aperture A(ξ) (see Fig. 16), we intend to calculate the �eld
distribution Ψim(x) in the image plane at a distance z′ on the other side of this
lens.

Here we limit our consideration to a one-dimensional situation but this
analysis is easily extended to the two-dimensional case. Let r be the distance

2Through-out this text, the terms �impulse response,� �point spread function,� and �point
di�raction pattern� are used interchangeably.
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Figure 16: point object and point image across a single lens
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P ′P ′′ from the object plane to the lens plane or aperture plane and s the distance
P ′′P from the aperture plane to the image plane. Furthermore, in Section 1, the
e�ect of a lens was shown to be a phase factor exp(−ikξ2/2f). We can describe
this situation by the following integral representation

Ψim(x) = K1

∫
(
∫

Ψobj(x′)
eikr

r
A(ξ)dx′)exp

(
−ikξ2

2f

)
eiks

s
dξ; (90)

where the �rst integral containing eikr/r represents a spherical wave propagating
from an object point to the lens plane, and the second integral containing eiks/s
is the spherical wave from each point on the wavefront immediately after the

lens. As already mentioned the phase factor exp
(
−ikξ2

2f

)
represents the phase

change caused by the lens.
For the distance r we obtain

r2 = |x′|2 − 2x′ · ξ + |ξ|2 = R′2 − 2x′ · ξ + |ξ|2, (91)

where the coordiantes of the object point are characterized by

R′2 = |x′|2. (92)

Similarly,

|s|2 = |x|2 − 2x · ξ + |ξ|2 = R2 − 2x · ξ + |ξ|2 (93)

where the coordiantes of the image point are characterized by

R2 = |x|2 (94)

As the distances r and s are much bigger than R or R' we can apply a binominal
expansion to Eqs. (92) and neglect terms in second order. We obtain the
following approximation for the distances r and s{

|r| ' R′ − x′ξ
R′ + ξ2

2R′ ,

|s| ' R− xξ
R + ξ2

2R .
... (95)

Substituting these expressions into Eq. 90 we obtain

Ψim(x) = K1
eik(R+R′)

RR′

∫∫
Ψobj(x′)A(ξ)

× exp
[
(
−ikξ2

2
)
(

1
R

+
1
R′
− 1
f

)]
exp

[
ikξ

(
x′

R′
+
x

R

)]
dx′dξ.

(96)

If x′ � f and x′ � z with similar constraints on x, then we have, essentially,
paraxial optics. Combining the constant factors outside the integral,

Ψim(x) = K

∫∫
Ψobj(x′)A(ξ)

× exp
[
(
−ikξ2

2
)
(

1
R

+
1
R′
− 1
f

)]
exp

[
ikξ

(
x′

R′
+
x

R

)]
dx′dξ.

(97)
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where the prefactor K is

K = K1
eik(R+R′)

RR′
(98)

and the distances r and s have been approximated by the respective axial dis-
tances. The �rst exponential term goes to unity if

1
z

+
1
z′

=
1
f
. (99)

However, this is the lens equation already known from ABCD analysis and
geometrical optics. Using this relation, we obtain

Ψim(x) = K

∫∫
Ψobj(x′)A(ξ) exp

[
−ikξ

(
x′

z′
+
x

z

)]
dx′dξ. (100)

Expanding the exponential term, we �nd

Ψim(x) = K

∫∫
Ψobj(x′) exp

(
−ikξx′

z′

)
A(ξ) exp

(
−ikξx
z

)
dx′dξ. (101)

As can be seen Eq. (101) contains two Fourier transforms. We calculate �rst
the x' integration and obtain

Ψim(x) = K

∫
Ψ̃obj

(
ξ

zλ

)
A(ξ) exp

(
−ikξx
z

)
dξ. (102)

Here Ψ̃obj(ξ/zλ) is the Fourier transform of Ψobj(x′).
Since we are interested in the impulse response, we consider the object dis-

tribution to be a delta function, i.e.,

Ψobj(x′) = δ(x′). (103)

Thus,

Ψ̃obj

(
ξ

zλ

)
=
∫
δ(x′) exp

(
−ikξx′

z′

)
dx′ = 1. (104)

Using this relation, Eq. (102) reduces to

Ψim(x) = K

∫
A(ξ) exp

(
−ikξx
z

)
dξ. (105)

Equation 105 states that the amplitude distribution in the image plane of a point
object is given by the Fourier transform of the aperture distribution function,
i.e., the function describing the amplitude and phase variation introduced by
passage through the lens. The constantK in Eq. (105) contains a spherical phase
factor [see Eqs. (98), (92), and (??)], while this factor may be ignored at this
point, it plays a crucial role in coherent imaging, holography and interferometry
(see advanced chapters).
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However, for incoherent imaging, we require an expression for the intensity
impulse response S(x). This is, of course, readily obtained from Eq. (105) by
simply forming the squared modulus. Thus,

S(x) =
∣∣∣∣K ∫ A(ξ) exp

(
−ikξx
z

)
dξ

∣∣∣∣2 . (106)

Equations (105) and (106) are important results for imaging and will bbe used
extensively in subsequent chapters. As a conclusion, we have shown that the
impulse response can be calculated as a function of the aperture function A(ξ).

5.4 Conclusions

In summary the main results are:

• An optical imaging system employing incoherent light may be considered
to be a linear and stationary system in intensity.

• The detailed distribution of light in the image of an extended object can be
calculated based on the point spread function i.e. the intensity distribution
in the image plane of a point object.

• The distribution in the image of a point may be determined directly from
the aperture function.

Eqs. (106) and (89) are su�cient to describe the image forming properties of an
optical system. An alternative formulation and derivation which better lends
itself to intuitive interpretation will be given later. In the following, we will use
the convolution operation of Eqs. (89) and (106) to compute images for some
simple examples in order to provide some insight into the implication of these
results in the area of image quality prediction and evaluation.

5.5 Appendix: the relationship to geometrical optics

Equations (99) and (101) may be used to illustrate the relationship between wave
optics and geometrical optics. First. it should be noted that the wave optics
constraint to eliminate the quadratic phase error, e.g., Eq. (99), is precisely a
consequence of the ABCD imaging condition. Later in the study of aberrations,
the quadratic term in the Seidel expansion is referred to as the focusing error.

Furthermore, interesting relationships between the two di�erent ways of
modeling optical phenomena may be obtained by imposing the basic tenet of
geometrical optics on Eq. (101). In geometrical optics, di�raction e�ects are
completly ignored. We can accomplish that in this case by assuming that the
di�raction pattern has no width, i.e., it is a Dirac delta function. This condition
arises by assuming uniform illumination across the aperture in Eq. (100) and
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further assuming it to be in�nitely wide. Under these conditions, Eq. (100) may
be evaluated to yield

ψim(x) = K

∫
ψobj(x′)δ

(
x′

λz′
+

x

λz

)
dx′. (107)

The integral in Eq. (107) may now be evaluated to yield

ψim(x) = Kψobj

(
− z
z′
x
)
. (108)

Note that in this case the image is the same function as the object. That is, there
has been no degradation due to di�raction. However, the negative argument
indicates that the image is inverted. Also, the argument of the image function
is scaled by the magni�cation, m = −z/z′; that is, the image is magni�ed by
the ratio of the object distance to the image distance, all well known results
from geometrical optics.

So far we have not discussed coherence. As a preliminary results without
proof we would like to indicate the possiblity to extend this analysis for inco-
herently illuminated objects. If Iim(x) denotes the intensity distribution in the
image of such an object and Iobj(x′) the intensity distribution of the object,
then the two are related by

Iim(x) = K ′
∫
Iobj(x′)S

(
x′ +

z

z′
x
)
dx′, (109)

where S(x) is the intensity impulse response as calculated from Eq. (106) and
K ′ is a constant.
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